Cientistas fizeram um ‘peixe’ a partir de células cardíacas humanas, e ele nada como um coração batendo

O peixe biohíbrido. (Lee et al., Ciência, 2022)

Com a cauda balançando ritmicamente de um lado para o outro, esse estranho peixe sintético vasculha sua solução de sal e glicose, usando a mesma força que nossos corações pulsantes.

Este sistema circulatório miniaturizado bacana, desenvolvido por cientistas das universidades de Harvard e Emory, pode continuar nadando no ritmo por mais de 100 dias.

Os inventores têm grandes esperanças para o pequeno dispositivo estranho, composto de células vivas do músculo cardíaco (cardiomiócitos) cultivadas a partir de células-tronco humanas.

Peixes biohíbridos compostos por células do músculo cardíaco humano

A criação do peixe ‘biohíbrido’ concentra-se em duas características reguladoras fundamentais de nossos corações: sua capacidade de funcionar espontaneamente, sem necessidade de entrada consciente (automaticidade); e mensagens iniciadas por movimento mecânico (sinalização mecanoelétrica).

Espera-se que esses insights aprendidos com a pesquisa permitam que os pesquisadores examinem mais de perto esses aspectos nas doenças cardíacas.

“Nosso objetivo final é construir um coração artificial para substituir um coração malformado em uma criança”, diz o bioengenheiro da Universidade de Harvard, Kevin Kit Parker.

Embora seja bastante simples criar algo que possa parecer um coração, fazer algo que realmente funcione como um é um desafio muito mais difícil. O fishbot contorcido é um grande passo para isso, com base em trabalhos anteriores usando músculos cardíacos de ratos para construir uma bomba biohíbrida de água-viva e uma arraia ciborgue.

“Eu poderia construir um modelo de coração de Play-Doh, isso não significa que eu possa construir um coração”, explica Parker.

“Você pode cultivar algumas células tumorais aleatórias em um prato até que elas se transformem em um nódulo latejante e chame-o de organoide cardíaco. Nenhum desses esforços vai, por design, recapitular a física de um sistema que bate mais de um bilhão de vezes durante sua vida enquanto simultaneamente reconstrói suas células em tempo real.

“Esse é o desafio. É aí que vamos trabalhar.”

Com duas camadas de cardiomiócitos em cada lado da barbatana caudal, o peixe biohíbrido é construído para ser autônomo ? ele pode autoperpetuar seu próprio movimento.

Quando um lado aperta, o outro lado é esticado, acionando um mecanismo de feedback que faz com que o lado esticado se contraia e então acione o mesmo mecanismo do outro lado em um ciclo contínuo.

Este sistema de contrações musculares assíncronas é baseado nos músculos de voo dos insetos.

Cada contração aciona automaticamente o outro par de músculos para se contrair. (Lee et al., Ciência, 2022)

A flexão física é o movimento mecânico que ativa o sinal elétrico formando canais iônicos nos músculos. Esses canais iônicos acionam os músculos para ativar e contrair.

A exposição do sistema à estreptomicina e ao gadolínio ? conhecidos por romper os canais iônicos nos músculos ? acabou diminuindo as velocidades de natação e quebrando a relação entre o alongamento mecânico e o desencadeamento da próxima contração do outro lado. Isso confirmou que os canais iônicos estavam de fato envolvidos com as contrações rítmicas.

“Ao alavancar a sinalização mecanoelétrica cardíaca entre duas camadas de músculo, recriamos o ciclo em que cada contração resulta automaticamente como uma resposta ao alongamento no lado oposto”, diz Keel Yong Lee, bioengenheiro da Universidade de Harvard.

“Os resultados destacam o papel dos mecanismos de feedback nas bombas musculares, como o coração”.

Parker e seus colegas também integraram um sistema semelhante ao marca-passo no biohíbrido: um aglomerado isolado de células que controlam a frequência e a coordenação desses movimentos.

“Por causa dos dois mecanismos internos de estimulação, nossos peixes podem viver mais, mover-se mais rápido e nadar com mais eficiência do que trabalhos anteriores”, explica o pesquisador de biofísica Sung-Jin Park, co-autor do estudo.

As contrações do tecido do peixe biohíbrido são comparáveis às do peixe-zebra que o biohíbrido é modelado – impulsionando o pequeno dispositivo com mais eficiência do que os sistemas robóticos mecânicos.

“Em vez de usar imagens do coração como um modelo, estamos identificando os principais princípios biofísicos que fazem o coração funcionar, usando-os como critérios de design e replicando-os em um sistema, um peixe vivo, nadando, onde é muito mais fácil ver se somos bem-sucedidos”, diz Parker.


Publicado em 13/02/2022 12h21

Artigo original:

Estudo original: